Siegel Half-Space and Modular Forms

Siegel Modular Forms:

Consider the Siegel upper-half space defined by

\displaystyle \mathcal H_g = \left\{Z= X+ iY | X, Y\in Sym_{g \times g}(\mathbb R), Y>0\right \}

where {X, Y} are symmetric {g \times g} real matrices, {Y} is a positive definite matrix.

Convex combinations of psd matrices are positive define, hence this is a convex subset of the subspace of symmetric matrices.

For example {n=1} gives the usual upper-halfplane {\mathbb H = \{x+iy | x, y \in \mathbb R, y>0\}}.

We have the action of {SL_2(\mathbb R)} on {\mathbb H} by Mobius transformations.

We have the Cayley map that relates {\mathbb H} to the unit disk. Similarly {\mathcal H_g} can be mapped to the domain

\displaystyle D_g =\{ Z| Z\in \in Sym_{g \times g}(\mathbb C), Z\bar Z -1 <0 \}

Similarly we have the action of the Symplectic group {\text{Sp}_{2g}(\mathbb R)} on the Siegel upper half-space.

The symplectic group is given by

\displaystyle \text{Sp}_{2g}(\mathbb R)=\left\{\gamma \in G L_{2 g}(\mathbb{R}) \mid \gamma^{\mathrm{T}}\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right) \gamma=\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right) \right\}

and it has discrete subgroups

\displaystyle \Gamma_{g}(N)=\left\{\gamma \in G L_{2 g}(\mathbb{Z}) \mid \gamma^{\mathrm{T}}\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right) \gamma=\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right), \gamma \equiv I_{2 g} \quad \bmod N\right\}

The action is given by

\displaystyle \gamma Z=\left(\begin{array}{ll} A & B \\ C & D \end{array}\right) Z := (AZ+B) (CZ+D)^{-1}.

Verify that {CZ+D} is non-singular and the resulting matrix has positive imaginary part. Upto {\pm I}, these symmetries {\gamma Z} are the only biholomorphic automorphism of the space.

The imaginary part of {\gamma Z} is given by

\displaystyle Im(\gamma Z) = Im (Z) (CZ+D)^{-1}

The differential form \displaystyle dZ Y^{-1} d\bar Z Y^{-1} satisfies

\displaystyle d(\gamma Z) Y(\gamma Z)^{-1} d(\bar \gamma Z) Y(\gamma Z)^{-1} ={(CZ+D)^{T}}^{-1} dZ Y^{-1} d \bar{Z} Y^{-1}(C Z+D)^{T}

Therefore the trace is an invariant differential form- gives the invariant metric on the space.

\displaystyle \text{tr}(dZ Y^{-1} d\bar Z Y^{-1})

The invariant volume form is given by

\displaystyle \frac{dXdY}{\det Y^{n}}

\displaystyle A=\left\{ \left(\begin{array}{cc} a & 0 \\ 0 & ^t a^{-1} \end{array}\right), a \in S p(n, \mathbb{R})\right\}

acts on the imaginary “line” {\{ iY, Y>0\}}, and acts is the conjugation action { Y \rightarrow aYa^{T}}.

The discrete subgroup

\displaystyle \text{Sp}_{2g}(\mathbb Z)=\left\{\gamma \in G L_{2 g}(\mathbb{Z}) \mid \gamma^{\mathrm{T}}\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right) \gamma=\left(\begin{array}{cc} 0 & I_{g} \\ -I_{g} & 0 \end{array}\right) \right\}

contains the following subgroups

\displaystyle \left\{\left(\begin{array}{cc} u & 0 \\ 0 & ^t u^{-1} \end{array}\right) \mid u \text { unimodular }\right\}

and

\displaystyle \left\{\left(\begin{array}{ll} 1 & n \\ 0 & 1 \end{array}\right) \mid n \text { symmetric, integral entries }\right\}

A Siegel modular form is a holomorphic function of weight {k} (holomorphic at infinity) that satisfies

\displaystyle f (\gamma Z) = \det(CZ+D)^{k} f(Z).

Instead of {\det^k} we can consider any representation {\rho} of {GL_g} and have {f} to take values in that representation.
That is if {\rho: GL_g \rightarrow GL(V)}, we ask for {f (\gamma Z) = \rho(CZ+D) f(Z),} so that {f: \mathcal H_g \rightarrow V.}

We can also define modular forms with a character by

\displaystyle f (\gamma Z) =\chi(\det D) \det(CZ+D)^{k} f(Z).

For {g>1}, we don’t need to impose the condition at infinity. (Koecher Principle).

For level {1}, the invariance under { \left\{\left(\begin{array}{cc} u & 0 \\ 0 & ^t u^{-1} \end{array}\right) \mid u \text { unimodular }\right\}} and { \left\{\left(\begin{array}{ll} 1 & n \\ 0 & 1 \end{array}\right) \mid n \text { symmetric, integral entries }\right\}} implies that

\displaystyle f(uZu^{t} + n) = \det u^k f(Z)

and we have the Fourier expansion

\displaystyle f(Z) = \sum_{T  \ge 0} a(T) e(\text{tr}(TZ))

where {T} runs over half-integral positive semi-definite symmetric matrices (diagonal entries are integers, off-diagonal are half-integers).

\displaystyle a(T) =\int_{X \bmod 1} f(Z) e(-\text{tr}(TZ)) dX

We have {a(T) = a(MTM^{T})} for integer matrices {M}, so we can collect the terms and write the sum as indexed by classes under the congujate action.

For {g>1}, the contribution from {T \not > 0} can be seen to be zero because of existence of elements

\displaystyle \left(\begin{array}{cc} u & 0 \\ 0 & ^t u^{-1} \end{array}\right)

with

\displaystyle u =\left(\begin{array}{cc} u_1 & 0 \\ 0 & 1 \end{array}\right), u_1=\left(\begin{array}{ll} 1 & m \\ 0 & 1 \end{array}\right)

That’s why we don’t need the conditions for boundedness at infinity, this is called Koecher principle.

Now if the sum runs over {T>0} strictly positive half-integral matrices, the form {f} is called a cusp-form. This is equivalent to {f} not having any limits under the Siegel operators.

That is if we take the limits

\displaystyle \lim_{j \rightarrow \infty}f(Z^ j), \quad Z^j= \left(\begin{array}{cc} Z_1 & Z_{2}^{(j)} \\ t_{Z}(j) & Z_{3}^{(j)} \end{array}\right)

where {Z_2} are bounded and the eigenvalues of {Z_3} goes to infinity, we get modular forms of smaller dimension.

\displaystyle \lim_{j \rightarrow \infty}f(Z^j) (Z_1)=\sum_{T_1 \geq 0} a\left(\begin{array}{ll} T_1 & 0 \\ 0 & 0 \end{array}\right) e(\text{tr}(T_1Z_1)

For cusp forms {f}, all these limits applied to the functions {F(Z)= \det(CZ+D)^{-k} f(\gamma Z)} are zero .

The space of modular forms will be finite dimensional as in the classical case.

Examples:

For degree {g=1}, we have the usual modular forms, hence the level {1} forms are generated by the Eisenstein series {E_4} and {E_6}.

For {g\ge 2}, we have the following examples.

Eisenstein Series:

\displaystyle E_k =\sum_{C, D} \frac{1}{\det(C Z+D)^{k}}

where {C, D} run over the bottom half of the Siegel modular group {Sp_{2g}(\mathbb Z)}.

Klingen Eisenstein series:

One can use a cusp form of lower degree to construct

\displaystyle E_P=\sum_{P_r/ \Gamma} f(\gamma Z) \frac{1}{\det(C Z+D)^{k}}

The {f} will be a limit under the Siegel operator of this Eisenstein series.

Hecke Operators:

For the groups {\gamma_0(N)} defined by {C\equiv \mathbf 0 \bmod N}, we define the double cosets for each {p}

\displaystyle T^{(n)}(p):=\Gamma_{0}^{(n)}(N)\left(\begin{array}{ll} 1_{n} & \\ & p 1_{n} \end{array}\right) \Gamma_{0}^{(n)}(N)

\displaystyle T_{j}^{(n)}\left(p^{2}\right):=\Gamma_{0}^{(n)}(N)\left(\begin{array}{llll} 1_{j} & & & \\ & p 1_{n-j} & & \\ & & p^{2} 1_{j} & \\ & & & p 1_{n-j} \end{array}\right) \Gamma_{0}^{(n)}(N)

These generate the Hecke Algebra.

Posted in $.

Leave a comment