Three Squares Theorem by Geometry of Numbers

Three Squares Theorem: if {m} is a positive integer not of the form {4^{a}(8 n+7)}, then {m} is the sum of three squares.

We present a proof using geometry of numbers due to Ankeny.

We prove it for the case {m\equiv 3(\bmod 8)}, and squarefree. Let {m=p_{1} p_{2} \cdots p_{r}}

Find a prime {q} such that {\begin{aligned} \left(\frac{-2 q }{ p_{i}}\right) =+1, q \equiv 1(\bmod 4) \end{aligned}} for all {i}.

\displaystyle \left(\frac{-m}{ q}\right) =\left(\frac{-2}{ m}\right) \left(\frac{-m}{ q}\right)

\displaystyle =\left(\frac{-2}{ m}\right) \left(\frac{m}{ q}\right)

\displaystyle =\left(\frac{-2}{ m}\right)\prod_{i} \left(\frac{p_i}{ q}\right)

\displaystyle =\left(\frac{-2}{ m}\right)\prod_{i} \left(\frac{q}{ p_i}\right) =\prod_{i} \left(\frac{-2q}{ p_i}\right)=1
Therefore we find solutions to {b^{2}-4 q h=-m.}

{\left(\frac{-2 q }{ p_{i}}\right) =+1} implies {t^{2} \equiv\frac{-1 }{ 2 q}(\bmod m)} for some {t.}

\displaystyle R=2tqX+t b Y+m Z

\displaystyle S=(2q)^{1/2}X+ \frac{b}{(2q)^{1/2}}Y

\displaystyle T=\frac{m^{1 / 2} }{(2 q)^{1 / 2}} Y

Now consider the {R^{2}+S^{2}+T^{2}<2 m} which represent a symmetric convex region of area {\frac{2^{7 / 2} \pi}{3} >8.}
Hence by Minkowski’s theorem contains a non-zero integers point {(X,Y,Z).}

Note that {S,T} are not integers.

\displaystyle \begin{aligned} R^{2}+S^{2}+T^{2}=&\left(2tqX+t b Y+m Z\right)^{2} \\ &+\left( (2q)^{1/2}X+ \frac{b}{(2q)^{1/2}}Y\right)^{2}+\left( \frac{m^{1 / 2} }{(2 q)^{1 / 2}} Y\right)^{2} \\ \equiv & ~~t^{2}\left(2 qX+bY\right)^{2}+\frac{1}{2 q}\left(2 qX+bY\right)^{2} \\ \equiv &~~ 0~~(\bmod m) \end{aligned}

\displaystyle R^{2}+S^{2}+T^{2}=R^{2}+2\left(qX^{2}+b XY+hY^{2}\right){R^{2}+S^{2}+T^{2}<2 m} implies that {R^{2}+2\left(qX^{2}+b XY+hY^{2}\right) =m}

If we show that {v=2\left(qX^{2}+b XY+hY^{2}\right) } is a sum of two squares we are done.

Let {p} an odd prime dividing {v} with odd multiplicity.

{2q v=\left(2 qX+bY\right)^{2}+m Y^{2}}

Assume {p} doesnt divide {m}– we see that {\left(\frac{m}{ p}\right)=1}
If {p} divides {q}, {b^{2}-4 q h=-m} gives {\left(\frac{-m}{ p}\right)=1}
if {p} doesnt divide {q}, {p^{2 n+1} || \left(2 qX+bY\right)^{2}+m Y^{2}}, so {\left(\frac{-m}{ p}\right)=1}
Thus we have {\left(\frac{m}{ p}\right)=1} and {\left(\frac{-m}{ p}\right)=1} which implies {\left(\frac{-1}{ p}\right)=1}

If {p} divides {m}, then {\frac{1}{2 q} \frac{m}{p}Y^{2}=\frac{m}{p}(\bmod p)}

{Y^{2} \equiv 2 q~(\bmod p) \implies \quad\left(\frac{2 q}{p}\right)=+1} But {\left(\frac{-2 q }{ p_{i}}\right) =+1}, for {p_i} dividing {m}. Hence {\left(\frac{-}{p}\right)=1}

In all the cases, we get {p \equiv 1(\bmod 4),} thereby establishing that all odd factors of {v} with odd multiplicity are {1} modulo {4} which implies that {v} can be written as sum of squares.

Therefore {m=R^2+v} is a sum of three squares.

The cases {m\equiv 1,2,4,5,6~(\bmod 8)} are similar.

Ankeny’s Paper: https://www.ams.org/journals/proc/1957-008-02/S0002-9939-1957-0085275-8/S0002-9939-1957-0085275-8.pdf

Posted in $.

Leave a comment