BLR Linearity testing

A function {f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}} is linear if either of the following conditions hold:
{f(x)=\sum_{i=1}^{n} a_{i} x_{i}} for some {a_{i} \in \mathbb{F}_{2}} (Global description)
For all {x, y \in \mathbb{F}_{2}^{n}, f(x+y)=f(x)+f(y)} (Local description)


What can we say about function which satisfies many of these local requirements? How close is it to a linear function? How does the distance to linear functions related to the fraction of local requirements satisfied?

BLR Test (Blum, Luby, Rubinfeld): Given {f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}} :

  1. Choose {x, y \in \mathbb{F}_{2}^{n}} independently and uniformly at random.
  2. Query {f(x), f(y), f(x+y)}
  3. Accept if {f(x)+f(y)=f(x+y)} and Reject otherwise.

Theorem: Let {f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}} be a function whose distance to linear functions is {\varepsilon}. Then the BLR test rejects {f} with probability between {\varepsilon} and {5 \varepsilon .}

Fourier Proof: Let \displaystyle F(x)=(-1)^{f(x)}= \sum_{\alpha \in \mathbb{F}_{2}^{n}} \widehat{F}(\alpha)(-1)^{\langle\alpha, x\rangle}

\displaystyle \begin{aligned}{Pr}_{x, y}[f(x)+f(y)=f(x+y)] &=\frac{1}{2}+\frac{1}{2} \mathbb{E}_{x, y}[F(x) F(y) F(x+y)] \\ &=\frac{1}{2}+\frac{1}{2} \sum_{\alpha, \beta, \gamma \in \mathbb{F}_{2}^{n}} \widehat{F}(\alpha) \widehat{F}(\beta) \widehat{F}(\gamma) \mathbb{E}_{x, y}\left[(-1)^{\langle\alpha, x\rangle+\langle\beta, y\rangle+\langle\gamma, x+y\rangle}\right] \\ &=\frac{1}{2}+\frac{1}{2} \sum_{\alpha \in \mathbb{F}_{2}^{n}} \widehat{F}(\alpha)^{3} \end{aligned}

Upper bound: Using Parseval { \sum \widehat{F}(\alpha)^{2}=\mathbb{E}\left[F(x)^{2}\right]=1 }, we get

\displaystyle {Pr}_{x, y}[f(x)+f(y)=f(x+y)] \leq \frac{1}{2}\left(1+\max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{F}(\alpha)\right)

We have for any

\displaystyle \sum \widehat{F}(\alpha)^{2}=\mathbb{E}\left[F(x)^{2}\right]=1

We have for any linear function

\displaystyle L(x)=\langle x, \alpha\rangle \text { it holds that } {Pr}[f(x) \neq L(x)] \geq \varepsilon and hence

\displaystyle \hat{F}(\alpha)=\mathbb{E}_{x}\left[F(x)(-1)^{\langle x, \alpha\rangle}\right]={Pr}[f(x)=L(x)]-{Pr}[f(x) \neq L(x)] \leq 1-2 \varepsilon

\displaystyle {Pr}_{x, y}[f(x)+f(y)=f(x+y)] \leq \frac{1}{2}\left(1+\max _{\alpha \in \mathbb{F}_{2}^{n}} \widehat{F}(\alpha)\right)\leq 1-\varepsilon

\displaystyle \implies {Pr}_{x, y}[f(x)+f(y)\neq f(x+y)] \geq \varepsilon

Lower bound: Let {\alpha'} be such that {d(f, <\alpha',- >)=\varepsilon.}

We have

\displaystyle \hat{F}(\alpha')=1-2 \varepsilon
\displaystyle \widehat{F}\left(\alpha'\right)^{3} \geq 1-6 \varepsilon
\displaystyle \sum_{\alpha \neq \alpha^{'}}|\widehat{F}(\alpha)|^{3} \leq \sum_{\alpha \neq \alpha^{'}}|\widehat{F}(\alpha)|^{2}=1-\widehat{F}\left(\alpha^{'}\right)^{2} \leq 4 \varepsilon
Therefore
\displaystyle {Pr}_{x, y}[f(x)+f(y)=f(x+y)] \geq 1-5\varepsilon

Posted in $.

Leave a comment