Legendre, Jacobi, Kronecker Symbols

For an odd prime {p}, the Legendre symbol is defined as the quadratic residue symbol,

\displaystyle \left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue modulo } p \text { and } a \not \equiv 0 (\bmod p), \\ -1 & \text { if } a \text { is a non-quadratic residue modulo } p \\ 0 & \text { if } a \equiv 0 \mod p\end{cases}

\displaystyle \left(\frac{\cdot}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow\{\pm 1\}

This is a character modulo {p} and is helpful as a “harmonic” in contrast to the Gauss’s notation {aRp} and {aNp} which serve as indicators for being a quadratic residue and non-residue. We also distinguish {0 \bmod p} and rest of the quadratic residues.

Some properties of Legendre symbol:

Euler’s criterion:

\displaystyle \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)

Periodicity:

\displaystyle \left(\frac{a}{p}\right)=\left(\frac{b}{p}\right) , \text{ if } a \equiv b \mod p

Mutliplicativity:

\displaystyle \left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .

Quadratic reciprocity:

For {p, q} distinct odd primes, we have

\displaystyle \begin{aligned} \left(\frac{q}{p}\right)\left(\frac{p}{q}\right)&=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\\ \left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}&= \begin{cases}1 & \text { if } p \equiv 1~(\bmod 4) \\ -1 & \text { if } p \equiv 3~(\bmod 4)\end{cases} \\ \left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}&= \begin{cases}1 & \text { if } p \equiv 1 \text { or } 7~(\bmod 8) \\ -1 & \text { if } p \equiv 3 \text { or } 5~(\bmod 8)\end{cases}\\ \end{aligned}

Expressions in terms of analytic functions:

\displaystyle \left(\frac{q}{p}\right)=\prod_{n=1}^{\frac{p-1}{2}} \frac{\sin \left(\frac{2 \pi q n}{p}\right)}{\sin \left(\frac{2 \pi n}{p}\right)}=\text{sgn}\left(\prod_{i=1}^{\frac{p-1}{2}} \prod_{k=1}^{\frac{q-1}{2}}\left(\frac{k}{q}-\frac{i}{p}\right)\right)

Zolotarev’s Lemma:

{\left(\frac{a}{p}\right)} is the determinant of the permutation map induced by the multiplication by {a} map on {\mathbb Z/p\mathbb Z.}

Gauss Lemma:

{\left(\frac{a}{p}\right)} equals the number of residues in {a, 2a, 3a, \cdots \frac{p-1}{2}a} that get mapped to {\{1, 2, \cdots \frac{p-1}{2} \}}.

Legendre symbols are quadratic (real) characters: that is they only take values {\pm 1} on integers coprime to {p}. Also note that the symbol is just defined by odd {p}. For {p=2}, we get a trivial symbol if we define it in terms of squares/quadratic residues because every odd number is a square mod {2}.

Quadratic residues:

What about quadratic residues modulo {n} for {n} not a prime? Let’s say {n=p^k}, how do we decide if a number is square mod {p^k}.

The equation {X^2-a=0} has a solution modulo {p^k} iff only if it has solution mod {p}. To see that we can lift mod {p} to {p^k}, write {X= b +tp} where {b^2=a \mod p}. We get

\displaystyle X^2-a= b^2+2tbp+p^2 -a = a+ kp +2btp+p^2 -a

This is zero mod {p^2} iff {k+2bt=0 \mod p}. So if {p\neq 2}, we can always choose such which satisfies this equation and get a solution to {X^2=a \mod p^2}. We can continue doing this and lift the uniquely to {\mod p^k.}

What about modulo {2^k}?

Mod {2}, everything is {0, 1} and hence a square.
Mod {4}, {0, 1} are the only squares. So just one square in {(\mathbb Z/4)^{\times}}
Mod {2^k} with {k\ge 3}, there are exactly {2^{k-3}} odd squares that is in {(\mathbb Z/2^k)^{\times}} , so that subgroup of squares is of index {4} and hence cannot be defined by by a quadratic character. This is due to the fact that { \left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times} \cong \mathrm{C}_{2} \times \mathrm{C}_{2^{k-2}}}, the group is not cyclic and has two factors.

The even squares should be divisible by {4} and should be of the form {4k} where {k} is a square modulo {2^{k-2}.}


Putting all these together and the fact that {x} is square mod {mn} iff if it’s a square mod {m} and {n} for coprime integers {m} and {n}, we get that the subgroup of squares in {\left(\mathbb Z/N\right)^{\times}} is defined by not just one character (it’s kernel) but a list of characters one for each prime.

For odd primes powers {p^k} the character is the Legendre symbol {\left(\frac{q}{p}\right)},

for {n=2}, the character is trivial,

for {n=4}, the character is a quadratic character detecting {1 \mod 4},

for {n=2^k, k \ge 3}, there are 4 quartics character defining a subgroup of index {4}. For instance we have to detect {1 \mod 8} for {n=3}.

To repeat the character defining the squares in {\left(\mathbb Z/N\right)^{\times}} cannot be defined in terms of a single character or a symbol- like we had in the case of odd primes. We have to use all the characters mentioned above to detect the subgroup. That is

\displaystyle 1_{\square}(a) = \sum_{ \chi(\square)=1} \chi(a)

We now extend the lower argument to all odd numbers.

Jacobi Symbol: For an odd positive number {n}, we define the Jacobi symbol {\left(\frac{a}{n}\right)} mutliplicatively in {n} as the product of Legendre symbols

\displaystyle \left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{k_{1}}\left(\frac{a}{p_{2}}\right)^{k_{2}} \cdots\left(\frac{a}{p_{r}}\right)^{k_{r}} where

\displaystyle n=p_1^{k_1}p_2^{k_2} \cdot p_{r}^{k_r}

This is an extension of Legendre symbol and in fact equals the sign of the permutation of multiplication by {a} on {\mathbb Z/n\mathbb Z.}

So this also non-zero values {\pm1} precisely on { \left(\mathbb Z/n\right)^{\times}}, that is

{\left(\frac{a}{n}\right)= \begin{cases}0 & \text { if } (a, n) \neq 1 \\ \pm 1 & \text { if }(a, n)=1\end{cases}}

and defines a character mod {n}.

\displaystyle \left(\frac{\cdot}{n}\right):(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow\{\pm 1\}

Periodicity in {a} with period {n}.

\displaystyle \text { If } a=b~(\bmod n) \text {, then }\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)

Multiplicativity in both arguments:

\displaystyle \left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)

\displaystyle \left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)

Mutiplicativity in {a} follows from the multiplicativity of Legendre symbol and the mutiplicativity on {n}, odd is by defintion.

Quadratic reciprocity:

For {m, n} distinct positive odd integers,

\displaystyle \left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}= \begin{cases}1 & \text { if } n \equiv 1~(\bmod 4) \text { or } m \equiv 1(\bmod 4) \\ -1 & \text { if } n \equiv m \equiv 3~(\bmod 4)\end{cases}

\displaystyle \left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}= \begin{cases}1 & \text { if } n \equiv 1~(\bmod 4) \\ -1 & \text { if } n \equiv 3~(\bmod 4)\end{cases}

\displaystyle \left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}= \begin{cases}1 & \text { if } n \equiv 1,7~(\bmod 8) \\ -1 & \text { if } n \equiv 3,5~(\bmod 8)\end{cases}

Squares and quadratic residues:

\displaystyle \left(\frac{x^2}{n}\right)=1

follows from the fact that Legendre symbol detects squares.

\displaystyle \left(\frac{a}{m^2}\right)=1 \text { if } (a, m)=1.This is because of the construction/definition we get

\displaystyle \left(\frac{a}{m^2}\right)=\left(\frac{a}{m}\right)^2=1.

If {a} is a square mod {n}, then we have {\left(\frac{a}{n}\right)=1}.

If {\left(\frac{a}{n}\right)=-1}, then {a} has to be a non-residue. But it could happen that {\left(\frac{a}{n}\right)=1} and still {a} is a non-residue. For instance it can happen because {n=p^2}, and then the symbol even on non residues is

\displaystyle \left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)^2=(-1)^2=1

Or because n is a product of primes say {pq} and {a} is a non-residue modulo both {p} and {q}, so .

\displaystyle \left(\frac{a}{pq}\right)=\left(\frac{a}{p}\right) \left(\frac{a}{q}\right)=(-1)(-1)=1.

The upper argument {a} can be any integer, but we have restricted the lower argument {n} to be an odd positive number. What should we do for {n} negative or even?

We extend further.

Kronecker Symbol:

{\left(\frac{a}{2}\right)} is defined as the quadratic character mod {8} given by

\displaystyle \left(\frac{a}{2}\right)= \begin{cases}0 & \text { if } a \text { is even, } \\ 1 & \text { if } a \equiv \pm 1~(\bmod 8) \\ -1 & \text { if } a \equiv \pm 3~(\bmod 8)\end{cases}.

{\left(\frac{a}{-1}\right)} is the sign symbol, a character on {\mathbb R^{*}/\mathbb R_{+}^{*}}.

\displaystyle \left(\frac{a}{-1}\right)= \begin{cases}-1 & \text { if } a<0 \\ 1 & \text { if } a \geq 0\end{cases}

\displaystyle \left(\frac{a}{1}\right)=1

Now extend the Jacobi symbol multiplicatively with these extra definitions.

Why did we do this? Let’s say we want the Jacobi symbol {\left(\frac{a}{\cdot}\right)} to be a character, that is in the lower argument. We already have multiplicativity over odd positive integers. Let assume that {a = 1 \mod 4} be a positive integer so that

we have by quadratic reciprocity for a odd positive integer

\displaystyle \left(\frac{a}{n}\right)= \left(\frac{n}{a}\right)

{\left(\frac{n}{a}\right)} is a character modulo {a}. Extend the definition of {\left(\frac{a}{\cdot}\right)} to all the integers so that it equals {\left(\frac{n}{a}\right)}.

\displaystyle \left(\frac{a}{2}\right) =\left(\frac{2}{a}\right) =(-1)^{\frac{n^{2}-1}{8}} = \begin{cases}0 & \text { if } a \text { is even, } \\ 1 & \text { if } a \equiv \pm 1~(\bmod 8) \\ -1 & \text { if } a \equiv \pm 3~(\bmod 8)\end{cases}.

\displaystyle \left(\frac{a}{1}\right) =\left(\frac{1}{a}\right)=1

\displaystyle \left(\frac{a}{-1}\right) =\left(\frac{-1}{a}\right)=1

This shows the motivation for the defintion of the Kronecker symbols. Note that we only considered the case {a = 1 \mod 4} used it to define the symbol for the general case, because for {a = 3 \mod 4}, we {\left(\frac{a}{n}\right)= (-1)^{n-1/2}\left(\frac{n}{a}\right)} and {\left(\frac{a}{n}\right)} is not even have a periodic function in {n}. (Also extension to {2} from this formula doesn’t make sense!)

We again see that the values again are non-zero only for { \left(\mathbb Z/n\right)^{\times}}.

Now the multiplicativity in {a} is lost! For instance consider the case {n=-1, a=0, b=-1}. But except for these choices we have

\displaystyle \left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)

Multiplicativity in {n}.

It is multiplicative in {n} if we avoid the value {0} in the lower argument.

\displaystyle \left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)

Periodicity in {a}: Assume {n>0}. Because at {2} the character {\left(\frac{a}{2}\right)} is defined {\bmod ~8}, the period of {\left(\frac{a}{2}\right)} is {4n} instead of {n} sometimes-for instance when {n} is divisible by {2} exactly once. Note that if {2} divides even number of times, then the symbol has to be trivial- we multiply {\left(\frac{a}{2}\right)} even number of times.

So if {n>0}, { \left(\frac{a}{n}\right)} is a real character of modulus

\displaystyle q=\begin{cases}4 n, & n \equiv 2(\bmod 4) \\ n, & \text { otherwise. }\end{cases}

If {n<0}, {\left(\frac{\cdot}{n}\right)} needed not be periodic, for instance take {n=-1}.

But {q} might not be the conductor and there could be a much smaller period. For instance Take {n=16}, {\left(\frac{a}{16}\right)=1} for every odd {a}. Hence it’s a trivial character with conductor {1}.

These list of characters { \left(\frac{\cdot}{n}\right)} do not exhaust all the real characters. {\left(\frac{-4}{\cdot }\right)} as we will see later is a character of modulus {4} , but cannot be represented as { \left(\frac{\cdot}{n}\right)} for any {n}.

Periodicity in {n}:

We have the following periodicity

\displaystyle \left(\frac{a}{m}\right)=\left(\frac{a}{n}\right) \text { whenever } m \equiv n \bmod \begin{cases}4|a|, & a \equiv 2(\bmod 4), \\ |a| & \text { otherwise. }\end{cases}

except for the cases {a=0} and {a= 3 ~\bmod 4.}

Thus if {a \not \equiv 3 ~(\bmod ~4)} and {a \neq 0}, {\left(\frac{a}{n}\right)} is a real character of modulus

\displaystyle q=\begin{cases}4|a|, & a \equiv 2(\bmod 4), \\ |a|, & \text { otherwise. }\end{cases}

But if {a=3 \mod 4}, {\left(\frac{a}{n}\right)} need not be periodic! For example take {\left(\frac{3}{n}\right)}.

Squares and residues: Just like Jacobi symbol, Kronecker doesn’t give information about whether {a} is a square mod {n.}.

Like before {\left(\frac{a}{n}\right)=1} doesn’t imply that {a} is a residue. But if we include {2}, that is when {n} is even, the values of {\left(\frac{a}{n}\right)} are completely independent of whether {a} is residue or non-residue. Like take {a=3} which is a square mod {2}, but {\left(\frac{3}{2}\right)=-1}. So we don’t have {\left(\frac{x^2}{n}\right)=1} anymore. Also {\left(\frac{a}{n}\right)=-1} doesn’t imply that {a} has to be a non-residue. (which is a true implication for odd {n})

Quadratic reciprocity:

\displaystyle \left(\frac{2}{n}\right)= \begin{cases} (-1)^{\frac{n^{2}-1}{8}} & \text { if } 2\nmid n \\ 0 & \text { if } 2\mid n\end{cases}

If {n=2^{e}n'} with {n'} odd

\displaystyle \left(\frac{-1}{n}\right)=(-1)^{\frac{n'-1}{2}}

Similarly if {m=2^{f}m'} with {m'} odd

\displaystyle \left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\pm(-1)^{\frac{m^{\prime}-1}{2}}(-1)^\frac{n^{\prime}-1}{2}

where we take the {-} sign iff both {m} and {n} are negative

Primtive quadratic characters: If {D} is a fundamental discriminant, that is {D} is given by

\displaystyle D= \begin{cases}d & \text { if } d \equiv 1~(\bmod ~4) \\ 4 d & \text { if } d \equiv 2 \text { or } 3~(\bmod ~4)\end{cases}

where {d} is a squarefree integer, that is {D} is the discriminant of the field {\mathbb Q(\sqrt d)} , then

\displaystyle \chi_{D} = \left(\frac{D}{n}\right)

is a character of conductor {|D|}, and is primitive. That is it’s period is exactly {|D|} and we can cannot induce {\chi} from a character of smaller modulus.

In fact {\chi_D} decides the splitting behaviour in the field.

\displaystyle \chi(p)= \begin{cases}0, & (p) \text { is ramified, } \\ 1, & (p) \text { splits } \\ -1, & (p) \text { is inert. }\end{cases}

Every primitive quadratic character is of this form!

We need {D} to be a fundamental discriminant. If it’s not the {\left(\frac{D}{n}\right)} needn’t even be a character. So sometimes it could be a character and not primitive, sometimes it’s not even a character and only when {D} is a fundamental discriminant we have a primitive character. For D=3 , it’s not periodic and hence not a character, for D=-4 it’s a primitive character and or D=4 we get the trivial character (so not primitive mod |D|).

Posted in $.

Leave a comment