Diophantine Sets

Diophantine sets are subsets defined by polynomial equations over integers. More precisely We obtain them basically by projecting integers solutions of some polynomial equations. Observation 1: Using the statement iff we see that there is no difference between one polynomial equation and a system of polynomial equations. Example: Even numbers are Diophantine: Odd numbers: Non-negative […]

Mordell’s Equation

The equation is called Mordell’s equation. For , it is non-singular and defines an elliptic curve (genus 1, group structure). Rational Points: We first describe the torsion part of the rational solutions. By Nagell-Lutz, these solutions should have integer coordinates. Torsion: Assume that is free of sixth powers. If not we can use the change […]

Sophie Germain’s Theorem

As early attempts to the proof of Fermat’s last theorem, many mathematicians solved the problem for small exponents. While these special cases are being studied, Sophie Germain, a French mathematician, came up with the following interesting result. (Look at https://www.agnesscott.edu/lriddle/women/germain.htm for her fascinating and revolutionary story) Theorem 1: For any odd prime such that is […]

Zeta(2)

Basel Problem 1644 asks to find the value of Euler (1735) showed that The result, , is a cornerstone of analysis, and there are diverse methods of proof from function theory, harmonic analysis, and geometry. All of them essentially uncover how integers sit inside real numbers. Euler’s Proof: Euler’s original method relies on two representations […]

Eisenstein’s Lattice Point Proof of Quadratic Reciprocity

The Law of Quadratic Reciprocity is a cornerstone of classical number theory—Gauss himself called it the “Theorema Aureum” (Golden Theorem). Although Gauss provided multiple proofs, Eisenstein’s geometric argument simplifies Gauss’s third proof by employing a lattice‐point counting method. Statement of the Law of Quadratic Reciprocity Let and be distinct odd primes. The Law of Quadratic […]