Liouville type identity and Elementary Proofs of Modular Identities

Liouville’s Identity:

Let {f} be an even function on integers, we have the identity

\displaystyle \sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ ax+by =2n\\ a, b, x, y \text{ odd } }}(f(a+b)-f(a-b))=\sum_{\substack{m \in \mathbb{N} \\ m\mid n \\ n/m \text{ odd }}} m(f(2 m)-f(0))

This is easy to prove once we know the identity!

Just compare the number of time {f(k)} occurs on both sides. For instance, only even terms {f(2k)} occur.
{f(0)} occurs when {a=b} on the LHS and the number of times it occurs is corresponds to divisors {a | 2n} and turns out to be

\displaystyle \sum_{\substack{m \in \mathbb{N} \\ m\mid n \\ n/m \text{ odd }}} m.

A generating function proof is to extrapolate the values

\displaystyle f(0), f(\pm 4), f(\pm 6), \cdots f(\pm 2n).to a degree {2n} polynomial, and then compute the LHS in terms of the polynomials.

Choosing {f(x)=x^2} gives

\displaystyle \sum_{\substack{\ell=1 \\\ell \text { odd }}}^{2 n-1} \sigma(\ell) \sigma(2 n-\ell)=\sum_{\substack{m \in \mathbb{N}\\ m \mid n \\ n / m \text { odd }}} m^{3}.

We use the following more general identity to prove some modular identities for divisor functions and representation numbers.

Let {f} be any function on integers such that

\displaystyle f(a, b, x, y)-f(x, y, a, b)=f(-a,-b, x, y)-f(x, y,-a,-b).

We have

\displaystyle \sum_{a x+b y=n}(f(a, b, x,-y)-f(a,-b, x, y)+f(a, a-b, x+y, y)

\displaystyle -f(a, a+b, y-x, y)+f(b-a, b, x, x+y)-f(a+b, b, x, x-y))

\displaystyle = \sum_{d \mid n} \sum_{x<d}(f(0, n / d, x, d)+f(n / d, 0, d, x)+f(n / d, n / d, d-x,-x)

\displaystyle -f(x, x-d, n / d, n / d)-f(x, d, 0, n / d)-f(d, x, n / d, 0)).

The conditions of the theorem are satisfied if for instance we have

\displaystyle f(a,-b, x, y)=f(-a, b, x, y), \quad f(a, b, x,-y)=f(a, b,-x, y).

A special case is if {f(a, b, x, y)=F(a-b, x-y)} with {F(x, y)=F(-x, y)=F(x,-y)}.


Then we have the Liouville’s Identity,

\displaystyle \begin{aligned} &\sum_{a x+b y=n}(F(a-b, x+y)-F(a+b, x-y)) \\ &=\sum_{d \mid n}(d-1)(F(0, d)-F(d, 0))+2 \sum_{d \mid n} \sum_{e<n / d}(F(d, e)-F(e, d)). \end{aligned}

Example:

a) {f(a, b, x, y) = xy}

Check that this satisfies the conditions for the identitty.

Then the LHS equals

\displaystyle E= \sum_{a x+b y=n} 2xy= 2 \sum_{m=1}^{n-1} \sigma(m) \sigma(n-m).

The RHS equals

\displaystyle \sum_{d \mid n} \sum_{x<d}\left(d x+x^{2}-\frac{n^{2}}{d^{2}}\right)=\sum_{d \mid n} \left( d\frac{d(d-1)}{2} + \frac{d(d-1)(2 d-1)}{6} -\frac{n^2}{d^2}\right)

\displaystyle =\frac{5}{6} \sigma_{3}(n)+\left(\frac{1}{6}-n\right) \sigma(n)

Therefore

\displaystyle \sum_{m=1}^{n-1} \sigma(m) \sigma(n-m)=\frac{1}{12}\left(5 \sigma_{3}(n)+(1-6 n) \sigma(n)\right).

This also implies

\displaystyle \sum_{m=1}^{n-1} m \sigma(m) \sigma(n-m)=\frac{n}{24}\left(5 \sigma_{3}(n)+(1-6 n) \sigma(n)\right)

b)

\displaystyle f(a, b, x, y)=x y^{3}+x^{3} y

gives

\displaystyle \sum_{m=1}^{n-1} \sigma(m) \sigma_{3}(n-m)=\frac{1}{240}\left(21 \sigma_{5}(n)+(10-30 n) \sigma_{3}(n)-\sigma(n)\right)

c)

\displaystyle f(a, b, x, y)=3 b^{2} x y^{3}+5 a b x^{3} y-3 a b x^{2} y^{2}-2 b^{2} x^{3} y

gives

\displaystyle 24\sum_{m=1}^{n-1} m \sigma(m) \sigma_{3}(n-m)-12\sum_{m=1}^{n-1} m \sigma_{3}(m) \sigma(n-m)

\displaystyle \frac{1}{10}\left(\left(6 n^{2}-5 n\right) \sigma_{3}(n)-n \sigma(n)\right)

d)

\displaystyle \sum_{m=1}^{n-1} m \sigma(m) \sigma_{3}(n-m) +\sum_{m=1}^{n-1}(n-m) \sigma(m) \sigma_{3}(n-m) = n \sum_{m=1}^{n-1} \sigma(m) \sigma_{3}(n-m)

\displaystyle = \frac{n}{240}\left(21 \sigma_{5}(n)+(10-30 n) \sigma_{3}(n)-\sigma(n)\right)

Adding and subtracting the last identity we get,

\displaystyle \sum_{m=1}^{n-1} m \sigma(m) \sigma_{3}(n-m)=\frac{1}{240}\left(7 n \sigma_{5}(n)-6 n^{2} \sigma_{3}(n)-n \sigma(n)\right),

\displaystyle \sum_{m=1}^{n-1} m \sigma_{3}(m) \sigma(n-m)=\frac{1}{120}\left(7 n \sigma_{5}(n)+\left(5 n-12 n^{2}\right) \sigma_{3}(n)\right).

e)

\displaystyle f(a, b, x, y)=a b x^{3} y-b^{2} x y^{3}

\displaystyle \sum_{m=1}^{n-1} m(n-m) \sigma(m) \sigma(n-m)=\frac{1}{12}\left(n^{2} \sigma_{3}(n)-n^{3} \sigma(n)\right)

f)

\displaystyle f(a, b, x, y)=b^{2} y^{4}-b^{2} x y^{3}

\displaystyle \sum_{m=1}^{n-1} m^{2} \sigma(m) \sigma(n-m)=\frac{1}{24}\left(3 n^{2} \sigma_{3}(n)+\left(n^{2}-4 n^{3}\right) \sigma(n)\right)

g)

\displaystyle f(a, b, x, y)=x y^{5}+x^{5} y-2 x^{3} y^{3}

\displaystyle \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)=\frac{1}{120}\left(\sigma_{7}(n)-\sigma_{3}(n)\right)

h)

\displaystyle f(a, b, x, y)=x y^{5}+x^{5} y-20 x^{3} y^{3}

\displaystyle \sum_{m=1}^{n-1} \sigma(m) \sigma_{5}(n-m)=\frac{1}{504}\left(20 \sigma_{7}(n)+(21-42 n) \sigma_{5}(n)+\sigma(n)\right)

Reference: https://people.math.carleton.ca/~williams/papers/pdf/249.pdf

Posted in $.

Leave a comment