A Proof of Fermat’s Sums of Squares Theorem using Triple Product Identity

We present a proof of Jacobi’s formula for representation number for sums of two squares due to Michael D. Hirschhorn

\displaystyle r_{2}(n)=4\left(d_{1}(n)-d_{3}(n)\right)

\displaystyle d_{i}(n)=\sum_{d \mid n,~ d \equiv i(\bmod 4)} 1

Start with the Jacobi’s Triple Product identity

\displaystyle \prod_{n = 1}^{\infty}\left(1+z x^{2 n-1}\right)\left(1+z^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)=\sum_{n=-\infty}^{\infty} z^{n} x^{n^{2}}

Plugging {-z^{2} x} for {z,} then {x} for {x^{2},} multiply by {z} and we obtain

\displaystyle \left(z-z^{-1}\right) \prod_{n = 1}^{\infty}\left(1-z^{2} x^{n}\right)\left(1-z^{-2} x^{n}\right)\left(1-x^{n}\right)

\displaystyle =\sum_{n=-\infty}^{\infty}(-1)^{n} z^{2 n+1} x^{\left(n^{2}+n\right) / 2}

\displaystyle =\sum_{n=-\infty}^{\infty} z^{4 n+1} x^{2 n^{2}+n}-\sum_{n=-\infty}^{\infty} z^{4 n-1} x^{2 n^{2}-n}

\displaystyle =z \prod_{n=1}^{\infty}\left(1+z^{4} x^{4 n-1}\right)\left(1+z^{-4} x^{4 n-3}\right)\left(1-x^{4 n}\right) -z^{-1} \prod_{n=1}^{\infty}\left(1+z^{4} x^{4 n-3}\right)\left(1+z^{-4} x^{4 n-1}\right)\left(1-x^{4 n}\right)

Differentiating with {z} and plugging {z=1} we get,

\displaystyle \prod_{n =1}^{\infty}\left(1-x^{n}\right)^{3}= \prod_{n=1}^{\infty}\left(1+x^{4 n-3}\right)\left(1+x^{4 n-1}\right)\left(1-x^{4 n}\right) \times\left(1-4 \sum_{n= 1}^{\infty}\left(\frac{x^{4 n-3}}{1+x^{4 n-3}}-\frac{x^{4 n-1}}{1+x^{4 n-1}}\right)\right)

Divide by

\displaystyle \prod_{n=1}^{\infty}\left(1+x^{n}\right)^{2}\left(1-x^{n}\right)

which equals

\displaystyle \prod_{n =1}^{\infty}\left(1+x^{4 n-3}\right)\left(1+x^{4 n-1}\right)\left(1-x^{4 n}\right)

to get

\displaystyle \prod_{n=1}^{\infty}\left(\frac{1-x^{n}}{1+x^{n}}\right)^{2}=1-4 \sum_{n= 1}^{\infty}\left(\frac{x^{4 n-3}}{1+x^{4 n-3}}-\frac{x^{4 n-1}}{1+x^{4 n-1}}\right)

We also have

\displaystyle \begin{aligned} \prod_{n =1}^{\infty}\left(\frac{1-x^{n}}{1+x^{n}}\right) &=\prod_{n =1}^{\infty} \frac{\left(1-x^{2 n-1}\right)\left(1-x^{2 n}\right)}{\left(1+x^{n}\right)} \\ &=\prod_{n =1}^{\infty}\left(1-x^{2 n-1}\right)\left(1-x^{n}\right) \\ &=\prod_{n =1}^{\infty}\left(1-x^{2 n-1}\right)\left(1-x^{2 n-1}\right)\left(1-x^{2 n}\right) \\ &=\sum_{n=-\infty}^{\infty}(-1)^{n} x^{n^{2}} \end{aligned}

Therefore we established

\displaystyle \left(\sum_{n=-\infty}^{\infty}(-1)^{n} x^{n^{2}}\right)^{2}=1-4 \sum_{n =1}^{\infty}\left(\frac{x^{4 n-3}}{1+x^{4 n-3}}-\frac{x^{4 n-1}}{1+x^{4 n-1}}\right)

Plugging in {-x} for {x} we get

\displaystyle \left(\sum_{n=-\infty}^{\infty} x^{n^{2}}\right)^{2}=1+4 \sum_{n =1}^{\infty}\left(\frac{x^{4 n-3}}{1-x^{4 n-3}}-\frac{x^{4 n-1}}{1-x^{4 n-1}}\right)

Comparing the {n} terms on both sides we proved

\displaystyle r_{2}(n)=4\left(d_{1}(n)-d_{3}(n)\right) .

https://www.jstor.org/stable/2323282
https://doi.org/10.1080/00029890.1985.11971686

Posted in $.

Leave a comment