Quintic Equations:

Bring-Jerrard Quintic Equations:

\displaystyle x^{5}+p x+q=0

\displaystyle x^{5}\pm x\pm a=0

Any general quintic can be reduced to Bring-Jerrard form using the Tschirnhaus type transformations:

\displaystyle x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0

1. Using the shifts { x+t}, we can remove the {x^4} term.


2. It’s also possible to remove the {x^3} term if we use the substitution {y=x^2+ax+b} and choose {a,b} so that {y} satisfies {y^5+ cy^2+dy+e=0.}

Details:

\displaystyle y^{5}+b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}=0

where

\displaystyle b_{4}=-a_4^{2}+2 a_3+a_4a-5 b

\displaystyle b_3=a_3^{2}-2 a_4 a_2+2 a_1-a_4 a_3 a+3 a_2 a+a_3 a^{2}+4 a_4^{2} b-8 a_3 b-4 a_4 a b+10 b^{2}

We can make {b_4=b_3=0} by these equations which give quadratic equations in {a} or {b}.

3. Bring-Jerrard Form: Using the subsituttion {z =y^{4}+\alpha y^{3}+\beta y^{2}+\gamma y+\delta}, with the right choice of {\alpha, \beta, \gamma, \delta},we can reduce the equation to

\displaystyle z^5+pz+q=0

Details:

\displaystyle y^5+ cy^2+dy+e=0.

\displaystyle z^{5}+c_{1} z^{4}+c_{2} z^{3}+c_{3} z^{2}+c_{4} z+c_{5}=0

\displaystyle c_{1}=-5 \delta+3 \alpha c+4 d

\displaystyle \begin{array}{c} c_{2}=10 \delta^{2}-12 \alpha \delta c+3 \alpha^{2} c^{2}-3 \beta c^{2}+2 \beta^{2} d-16 \delta d+5 \alpha c d+6 d^{2}+5 \alpha \beta e \\ -4 c e+\gamma(3 \beta c+4 \alpha d+5 e) \end{array}

It’s possible to solve for set {c_1=c_2=c_3=0} solving at most cubic equations.

4. {z =\frac{1}{\sqrt[4]{p}} y} reduces this to

\displaystyle z^5+z-a=0

5. Brioschi normal form:

Transformations of the form

\displaystyle w=\frac{\lambda+\mu x}{\frac{x^{2}}{C}-3}

reduce the general quintic to another one-parameter family given by

\displaystyle w^{5}-10 C w^{3}+45 C^{2} w-C^{2}=0

Bring-radical: We can solve the quintic in terms of Bring radicals- the solutions to {x^5+x+a=0.}

The Bring -radical ({a}) has can be written in terms of hypergeometric functions and elliptic functions. In general, arbitrary polynomials can be solved in terms of elliptic integrals and modular functions, theta constants.

Posted in $.

Leave a comment