Apery’s Proof of Irrationality of Zeta(3)

We want to prove the irrationality of {\zeta(3)}. We will use the following remarkable formula to achieve that.

\displaystyle \zeta(3)= \sum_{n-1}^{\infty} \frac{1}{n^{3}}=\frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}\left(\begin{array}{l} 2 n \\ n \end{array}\right)}

In fact, we will prove that for any rational {p/q}, we have

\displaystyle \left|\zeta(3)-\frac{p}{q}\right|>\frac{1}{q^{(\theta+e)}}, \quad \theta=13.417820 \ldots

The strategy to prove irrationality is simple. If you can approximate the number to well by rationals, then the number has to be irrational. Precisely if we have {|\alpha -\frac{p}{q}| < \frac{1}{q^{1+\delta}}} for infinitely many rationals {\frac{p}{q} }, then {\alpha} has to be irrational. This follows from the estimate, if {\frac{a}{b} \neq \frac{p}{q}.},

\displaystyle |\frac{a}{b} - -\frac{p}{q}| =\frac{aq-bp}{bq} \ge \frac{1}{bq}.

The question is how do we find the approximations or give an argument that shows the existence of good approximations. It’s mysterious!

We begin with the proof of the formula

\displaystyle \zeta(3)= \sum_{n-1}^{\infty} \frac{1}{n^{3}}=\frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}\left(\begin{array}{l} 2 n \\ n \end{array}\right)}

Telescoping

\displaystyle \frac{a_{1} a_{2} \ldots a_{k-1}}{\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{k}\right)}=\frac{a_{1} a_{2} \ldots a_{k-1}}{x\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{k-1}\right)}-\frac{a_{1} a_{2} \ldots a_{k}}{\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{k}\right)}

we get

\displaystyle \sum_{k=1}^{K} \frac{a_{1} a_{2} \ldots a_{k-1}}{\left(x+a_{1}\right) \ldots\left(x+a_{k}\right)}=\frac{1}{x}-\frac{a_{1} a_{2} \ldots a_{K}}{x\left(x+a_{1}\right) \ldots\left(x+a_{K}\right)}

Take {x=n^2} and {a_k -k^2} to get

\displaystyle \sum_{k=1}^{K} \frac{-1^{2} \cdot-2^{2} \ldots-(k-1)^{2}}{\left(n^{2}-1\right) \ldots\left(n^{2}-k^{2}\right)}=\frac{1}{n^{2}}-\frac{(-1)^{n-1} 2}{n^{2}\left(\begin{array}{c} 2 n \\ n \end{array}\right)}

Now with

\displaystyle \epsilon_{n, k}=\frac{1}{2} \frac{k !^{2}(n-k) !}{k^{3}(n+k) !},

we get

\displaystyle (-1)^{k} n\left(\epsilon_{n, k}-\epsilon_{n-1, k}\right)=\frac{(-1)^{k-1}(k-1) !^{2}}{\left(n^{2}-1^{2}\right) \ldots\left(n^{2}-k^{2}\right)}.

and

\displaystyle \sum_{n=1}^{N} \sum_{k=1}^{n-1}(-1)^{k}\left(\epsilon_{n, k}-\epsilon_{n-1, k}\right)

\displaystyle =\sum_{n=1}^{N} \frac{1}{n^{3}}-2 \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^{3}\left(\begin{array}{c} 2 n \\ n \end{array}\right)}

But this is also equal to

\displaystyle \sum_{k=1}^{N}(-1)^{k}\left(\epsilon_{N, k}-\epsilon_{k, k}\right)=

\displaystyle \sum_{k=1}^{N} \frac{(-1)^{k}}{2 k^{3}\left(\begin{array}{c} N+k \\ k \end{array}\right)\left(\begin{array}{c} N \\ k \end{array}\right)}+\frac{1}{2} \sum_{k=1}^{N} \frac{(-1)^{k-1}}{k^{3}\left(\begin{array}{c} 2 k \\ k \end{array}\right)}

The first term vanishes in the limit {N \rightarrow \infty} and we get

\displaystyle \sum_{k=1}^{\infty} \frac{1}{n^{3}}=\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{3}\left(\begin{array}{c} 2 k \\ k \end{array}\right)}.

OK, how do we use this formula for {\zeta(3)} to get good approximations?

The sequence

\displaystyle c_{n, k}=\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\left(\begin{array}{c} n \\ m \end{array}\right)\left(\begin{array}{c} n+m \\ m \end{array}\right)}

approaches to {\zeta(3)} uniformly in {k}.

But this as a rational approximation doesn’t work for our purposes. It can be shown that the denominator of {c_{n,k}} is quite large (like {e^n}) compared to distance between the {c_{n,k}} and {\zeta(3)} which is like {\frac{1}{n^3}}.

\displaystyle a_{n}=\sum_{k=0}^{n}\left(\begin{array}{c} n \\ k \end{array}\right)^{2}\left(\begin{array}{c} n+k \\ k \end{array}\right)^{2} c_{n, k}

\displaystyle b_{n}=\sum_{k=0}^{n}\left(\begin{array}{c} n \\ k \end{array}\right)^{2}\left(\begin{array}{c} n+k \\ k \end{array}\right)^{2}

Both the sequences {a_n, b_n} satisfy the recurrence relation

\displaystyle n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1}, \quad n > 1 .

and we can deduce

\displaystyle a_{n} b_{n-1}-a_{n-1} b_{n}=\frac{6}{n^{3}}

We now define the integer sequences

\displaystyle p_n = 2[1, 2, 3, \cdots n]^3 a_n, \quad q_n =2[1, 2, 3, \cdots n]^3 b_n

Before proving the recurrence and the relation, we show how we can use these sequences to get very good approximations to {\zeta(3)}

First note that we have {\frac{a_n}{b_n} \rightarrow \zeta(3)} and

\displaystyle \zeta(3)-\frac{a_{n}}{b_{n}}=\sum_{k=n+1}^{\infty} \frac{6}{k^{3} b_{k} b_{k-1}}.

Also from

\displaystyle n^{3} b_{n}+(n-1)^{3} b_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) b_{n-1}

we get

\displaystyle b_{n}-\left(34-51 n^{-1}+27 n^{-2}-5 n^{-3}\right) b_{n-1}+\left(1-3 n^{-1}+3 n^{-2}-n^{-3}\right) b_{n-2}=0

And hence {b_n} is bounded by the {\alpha^n} where {\alpha} is the bigger root of {X^2-34X+1=0.}

In fact,

\displaystyle \frac{(1+\sqrt{2})^{2}}{(2 \pi \sqrt{2})^{3 / 2}} \frac{(1+\sqrt{2})^{4 n}}{n^{3 / 2}}\left(1-\frac{48-15 \sqrt{2}}{64 n}+O\left(n^{-2}\right)\right)

Therefore

\displaystyle \left|\zeta(3)-\frac{p_{n}}{q_{n}} \right| \le \frac{C}{b_n^2} \le \frac{1}{\alpha^{2n}} \le \frac{1}{q_n^{1+\delta}}.

Proof sketch of recurrence relations:

\displaystyle B_{n, k}=4(2 n+1)\left(k(2 k+1)-(2 n+1)^{2}\right)\left(\begin{array}{l} n \\ k \end{array}\right)^{2}\left(\begin{array}{c} n+k \\ k \end{array}\right)^{2}

\displaystyle \begin{aligned} B_{n, k}-B_{n, k-1} &=(n+1)^{3}\left(\begin{array}{c} n+1 \\ k \end{array}\right)^{2}{{n+1+k} \choose k}^{2}-\\ &-\left(34 n^{3}+51 n^{2}+27 n+5\right)\left(\begin{array}{c} n \\ k \end{array}\right)^{2}\left(\begin{array}{c} n+k \\ k \end{array}\right)^{2}+\\ &+n^{3}\left(\begin{array}{c} n-1 \\ k \end{array}\right)^{2}\left(\begin{array}{c} n-1+k \\ k \end{array}\right)^{2} \end{aligned}

\displaystyle \implies (n+1)^{3} b_{n+1}- \left(34 n^{3}+51 n^{2}+27 n+5\right)b_{n}-n^{3} b_{n-1}=0 .

\displaystyle (n+1)^{3} b_{n+1, k} c_{n+1, k}-\left(34 n^{3}+51 n^{2}+27 n+5\right) b_{n, k} c_{n, k}+n^{3} b_{n-1, k} c_{n-1, k}

\displaystyle =\left(B_{n, k}-B_{n, k-1}\right) c_{n, k}+ +(n+1)^{3} b_{n+1, k}\left(c_{n+1, k}-c_{n, k}\right) -n^{3} b_{n-1, k}\left(c_{n, k}-c_{n-1, k}\right)

We can see this implies

\displaystyle \implies (n+1)^{3} a_{n+1}- \left(34 n^{3}+51 n^{2}+27 n+5\right)a_{n}-n^{3} a_{n-1}=0 .

So both the sequences satisfy the recurence. Now it’s easy to show that

\displaystyle a_{n} b_{n-1}-a_{n-1} b_{n}=\frac{6}{n^{3}}


We can deal with {\zeta(2)} similarly.

\displaystyle \zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}=3 \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(\begin{array}{l} 2 n \\ n \end{array}\right)}

The quantities to consider in the case are

\displaystyle \begin{aligned} &B_{n, k}=\left(k^{2}+3(2 n+1) k-11 n^{2}-9 n-2\right)\left(\begin{array}{c}. n \\ k \end{array}\right)^{2}\left(\begin{array}{c} n+k \\ k \end{array}\right), \\ &A_{n, k}=B_{n, k} c_{n, k}+3(-1)^{n+k-1} \frac{(n-1) !}{(k-1) !}. \end{aligned}

\displaystyle c_{n, k}-c_{n-1, k}=2(-1)^{n+k-1} \frac{k !^{2}(n-k-1) !}{n(n+k) !}.

\displaystyle b_{n}=\frac{\left(\frac{1}{2}(1+\sqrt{5})\right)^{4}}{2 \pi \sqrt{5+2 \sqrt{5}}} \frac{\left(\frac{1}{2}(1+\sqrt{5})\right)^{5 n}}{n}\left(1+O\left(n^{-1}\right)\right).


Questions:

How do we think about and come up with these approximations? The constructions and the double sequences involved all seem to work like magic!

Posted in $.

Leave a comment